2,278 research outputs found

    On the energy of charged black holes in generalized dilaton-axion gravity

    Full text link
    In this paper we calculate the energy distribution of some charged black holes in generalized dilaton-axion gravity. The solutions correspond to charged black holes arising in a Kalb-Ramond-dilaton background and some existing non-rotating black hole solutions are recovered in special cases. We focus our study to asymptotically flat and asymptotically non-flat types of solutions and resort for this purpose to the M{\o}ller prescription. Various aspects of energy are also analyzed.Comment: LaTe

    Dislocations in graphene

    Get PDF
    We study the stability and evolution of various elastic defects in a flat graphene sheet and the electronic properties of the most stable configurations. Two types of dislocations are found to be stable: "glide" dislocations consisting of heptagon-pentagon pairs, and "shuffle" dislocations, an octagon with a dangling bond. Unlike the most studied case of carbon nanotubes, Stone Wales defects are unstable in the planar graphene sheet. Similar defects in which one of the pentagon-heptagon pairs is displaced vertically with respect to the other one are found to be dynamically stable. Shuffle dislocations will give rise to local magnetic moments that can provide an alternative route to magnetism in graphene

    Oxidative Stress-Induced STIM2 Cysteine Modifications Suppress Store-Operated Calcium Entry

    Get PDF
    Store-operated calcium entry (SOCE) through STIM-gated ORAI channels governs vital cellular functions. In this context, SOCE controls cellular redox signaling and is itself regulated by redox modifications. However, the molecular mechanisms underlying this calcium-redox interplay and the functional outcomes are not fully understood. Here, we examine the role of STIM2 in SOCE redox regulation. Redox proteomics identify cysteine 313 as the main redox sensor of STIM2 in vitro and in vivo. Oxidative stress suppresses SOCE and calcium currents in cells overexpressing STIM2 and ORAI1, an effect that is abolished by mutation of cysteine 313. FLIM and FRET microscopy, together with MD simulations, indicate that oxidative modifications of cysteine 313 alter STIM2 activation dynamics and thereby hinder STIM2-mediated gating of ORAI1. In summary, this study establishes STIM2-controlled redox regulation of SOCE as a mechanism that affects several calcium-regulated physiological processes, as well as stress-induced pathologies

    Classical wave experiments on chaotic scattering

    Full text link
    We review recent research on the transport properties of classical waves through chaotic systems with special emphasis on microwaves and sound waves. Inasmuch as these experiments use antennas or transducers to couple waves into or out of the systems, scattering theory has to be applied for a quantitative interpretation of the measurements. Most experiments concentrate on tests of predictions from random matrix theory and the random plane wave approximation. In all studied examples a quantitative agreement between experiment and theory is achieved. To this end it is necessary, however, to take absorption and imperfect coupling into account, concepts that were ignored in most previous theoretical investigations. Classical phase space signatures of scattering are being examined in a small number of experiments.Comment: 33 pages, 13 figures; invited review for the Special Issue of J. Phys. A: Math. Gen. on "Trends in Quantum Chaotic Scattering

    Analysis of electrodeposited CdTe thin films grown using cadmium chloride precursor for applications in solar cells

    Get PDF
    Deposition of cadmium telluride (CdTe) from cadmium chloride (CdCl2) and tellurium oxide has been achieved by electroplating technique using two-electrode configuration. Cyclic voltammetry shows that near-stoichiometric CdTe is achievable between 1330 and 1400 mV deposition voltage range. The layers grown were characterised using X-ray diffraction (XRD), UV–Visible spectrophotometry, scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), photoelectrochemical (PEC) cell and DC conductivity measurements. The XRD shows that the electrodeposited CdTe layer is polycrystalline in nature. The UV–Visible spectrophotometry shows that the bandgap of both as-deposited and heat-treated CdTe films are in the range of (1.44–1.46) eV. The SEM shows grain growth after CdCl2 treatment, while, the EDX shows the effect of growth voltage on the atomic composition of CdTe layers. The PEC results show that both p- and n-type CdTe can be electrodeposited and the DC conductivity reveals that the high resistivity is at the inversion growth voltage (Vi) for the as-deposited and CdCl2 treated layers

    VAMOS: a Pathfinder for the HAWC Gamma-Ray Observatory

    Full text link
    VAMOS was a prototype detector built in 2011 at an altitude of 4100m a.s.l. in the state of Puebla, Mexico. The aim of VAMOS was to finalize the design, construction techniques and data acquisition system of the HAWC observatory. HAWC is an air-shower array currently under construction at the same site of VAMOS with the purpose to study the TeV sky. The VAMOS setup included six water Cherenkov detectors and two different data acquisition systems. It was in operation between October 2011 and May 2012 with an average live time of 30%. Besides the scientific verification purposes, the eight months of data were used to obtain the results presented in this paper: the detector response to the Forbush decrease of March 2012, and the analysis of possible emission, at energies above 30 GeV, for long gamma-ray bursts GRB111016B and GRB120328B.Comment: Accepted for pubblication in Astroparticle Physics Journal (20 pages, 10 figures). Corresponding authors: A.Marinelli and D.Zaboro

    A Cryogenic Silicon Interferometer for Gravitational-wave Detection

    Get PDF
    The detection of gravitational waves from compact binary mergers by LIGO has opened the era of gravitational wave astronomy, revealing a previously hidden side of the cosmos. To maximize the reach of the existing LIGO observatory facilities, we have designed a new instrument that will have 5 times the range of Advanced LIGO, or greater than 100 times the event rate. Observations with this new instrument will make possible dramatic steps toward understanding the physics of the nearby universe, as well as observing the universe out to cosmological distances by the detection of binary black hole coalescences. This article presents the instrument design and a quantitative analysis of the anticipated noise floor

    Context-dependent regulation of endothelial cell metabolism: differential effects of the PPARβ/δ agonist GW0742 and VEGF-A

    Get PDF
    Peroxisome proliferator activated receptor β/δ (PPARβ/δ) has pro-angiogenic functions, but whether PPARβ/δ modulates endothelial cell metabolism to support the dynamic phenotype remains to be established. This study characterised the metabolic response of HUVEC to the PPARβ/δ agonist, GW0742, and compared these effects with those induced by VEGF-A. In HUVEC monolayers, flux analysis revealed that VEGF-A promoted glycolysis at the expense of fatty acid oxidation (FAO), whereas GW0742 reduced both glycolysis and FAO. Only VEGF-A stimulated HUVEC migration and proliferation whereas both GW0742 and VEGF-A promoted tubulogenesis. Studies using inhibitors of PPARβ/δ or sirtuin-1 showed that the tubulogenic effect of GW0742, but not VEGF-A, was PPARβ/δ- and sirtuin-1-dependent. HUVEC were reliant on glycolysis and FAO, and inhibition of either pathway disrupted cell growth and proliferation. VEGF-A was a potent inducer of glycolysis in tubulogenic HUVEC, while FAO was maintained. In contrast, GW0742-induced tubulogenesis was associated with enhanced FAO and a modest increase in glycolysis. These novel data reveal a context-dependent regulation of endothelial metabolism by GW0742, where metabolic activity is reduced in monolayers but enhanced during tubulogenesis. These findings expand our understanding of PPARβ/δ in the endothelium and support the targeting of PPARβ/δ in regulating EC behaviour and boosting tissue maintenance and repair
    corecore